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I'
I INTRODUCTION

I IThe moving finite element (MFE) method(1),( 2) has shown

significant promise in I-D for solving numerically some of the most difficult

3 partial differential equation (PDE) problems which may contain multiple large

gradients. The objective of the present research is to investigate further

3 m the numerical properties and structure of the MFE method in order to reduce

it to practice in 2-D for important POE's which occur in the basic sciences

and engineering.

SI MATHEMATICAL BACKGROUND

In order to discuss this research concisely, the basic formulation of

I the MFE method in 2-0 is presented immediately below.

J Consider a general system of PDE's, U = L(U), or

'1 = L1(U)

(1)

UN = LN(U)

Using piecewise linear approximants of uI ... uN, which are of the

form u = mx + ny + p, on a hexagonally connected triangular mesh (see Figures

1-3), application of the chain rule to the differentiation of uk gives

Uk = k ok + xk + j yyk3  , where (2)
J

ik j J Uk i u k  auk

= ak ac; k kj = ;yk J :- (3)
akax. ay.i

The functions cJ, 6k, and ykJ are seen to be certain piecewise linear

[functions having their support in the hexagon of six triangles surrounding each
jth node. See Figures 1-4. AIR FOICE OFFICE OT SCIMNTIPIC MSARCt (AYSC)I

NOTIC OF T1Rj' JMTITTAL TO DTIC
This technic!i report has -been reviewvd and is
approved for r'.1ic reLease IAW APR 190-12.
Distribution is unlimited.

[ )A-TT W KEFJW
Chief, Teohnical Information Division
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I Figure 1. Exact solution surface, with lines

of constant X and constant Y.

I
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Approximation surface
Z* = F*(X,Y)

I
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I Figure 2. Approximate solution represented by

piecewise linear functions making

up triangular facets.
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7 Figure 3. Basis functions defined on each

hexagon provide three linearly
independent basis functions on eachI
triangle of the entire problem domain.
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Figure 4. Nodes.
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I

The following ODE's are derived for the parameters of the MFE method by a

formal minimization of the L2 norm of PDE residuals [6 - L(U)], plus regulari-

zation terms, with respect to the parameter derivatives alj, ... ,-Nj , &j

I
I , (.J, i,)5kj + (skj,.) i + (-ykj  ai =

i (Lk(U), a) for k = 1, ... N, (4a)

NI J1&, Bki)5k. + (Bk, sk i. + (yk3 , sk i)~
k=l j L(

I N
L (Lk(U), ski)+(regularization terms) (4b)
k=1N [

N,1 .j , ki)5kj + (ski , yk')i . + (yk J , yk V

k=l jI
N
L (Lk(U), yki)+ (regularization terms). (4c)
k=1

The sums on j in Equations (4) run over the seven neighboring nodes of

i (including the ith node itself) in the hexagonal grid. Equations (4) thus

provide the basic working equations of the MFE method in 2-D. This system of

ODE's is of the form

R(y) E C(y)y - g(y) =0 , (5)

where y(t) = (all, ..., Xl, yl; a12, ..., x2, Y2; ........ ) is the vector of

unknown parameters, and the "mass matrix" C(y) is symmetric and positive

definite. This system of ODE's can be quite stiff, and stiff ODE solution

methods are thus required in order to effectively obtain the numerical

solutions of Equations (4) and (5).

[[ 4



I
I

Regu I ar izat ion

As was evident in the 1-D DYLA code( 2 ,3, 4 ,5 ), the MFE method is also

amenable in 2-D to code modularization and to semi-automatic user-construction

of numerical POE systems and initial mesh configurations for both Dirichlet

or zero-Neumann boundary conditions. The most elementary types of node con-

trolling penalty functions are obtained by inclusion in the minimization

procedure of penalty terms Y(eidi - Si(di)) 2, where the di are triangle

I altitudes. The expressions for ei and Si become extremely large (and thus

restrict node motions) when the altitudes di approach a user-specified minimum

I value. (More general, gradient-dependent penalty functions will be consid-

ered in later 2-D work.) The evaluation of the inner products which appear

1in Equations (4) can be performed at each time step analytically for such
simple terms as (a, a ) and by numerical quadrature integrations otherwise.
The primary information which is required for these inner product evaluations
comes from the mesh geometry. The basic geometrical data structure, and

hence the analytic structure, of the MFE equations are established once, and

for all times, at the outset of code compilation--which thereby affords both

conceptual simplicity and practical economies in MFE computations in 2-D.

These features also make MFE codes well-suited for vector or parallel

processing computers.

ODE Integration

The stiffly stable numerical integration methods which can be used to

- solve the system of ordinary differential equations (4) and (5) usually

- contain a series of backward Cauchy-Euler steps interspersed with inter-

polations and extrapolations, all amidst error-controlling tests and

1 strategies. A backward Cauchy-Euler (BCE) step is obtained by replacing

in Equation (5) by the backward difference (y - y)lAt, where y is the known

I parameter vector at the previous time, and y is the unknown parameter-vector

at the current time. Upon linearization, the BCE equation then reads as

I R(y, y) R() + R'() . 6y 0 (6)

1 -5-
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m The structure of the mass matrix C(y) determines in large measure the

degree of difficulty and computational cost of obtaining numerical solu-

tions for 6y in Equation (6) and thus for the y array in Equations (4) and

(5). Both an implicit Runge-Kutta method (DIRK2) and the Gear method are

used interchangeably in the present test MFE code in 2-D; both of these

stiff ODE solvers incorporate the backward Cauchy-Euler steps described

I above.

Matrix Solutions

The structure of the mass matrix C(y) can be seen by considering the

1 15th node in a 6 x 6 grid mesh of the type shown in Figures 1-4. The

coupling among nodes in Equation (4) is represented schematically by

20 21

I
9 10

and the block structure of the mass matrix is shown in Figure 5. For a PDE

system with 2 "problem variables," the segment of the dependent variable

array y associated with the 15th node is (y)15 = (a115 , a21 5, x15, Y15)*,

Sand the 4 x 4 block C1 5,16 is

,( 0161 c15) 0 (W16' a15) (Y116 ' 015)

0 (a16v al1) (8216, c15) (y216, '15 )

=2 2 (7)

15 ,16  (016' 0s15) (016' B2,5) 5 L(Bk 16 P sk1 5 ) k(yk 16 ' Bk15 )

2 2
(016' Y115) (0,16 y215) L(sk16' yk15) Li(yk 161 yk15)

*The co-ordinate variable Y15 of the 15th MFE node is not to be confused

with the dependent variable of the MFE method which is also denoted by y.

-6-
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Although direct L-U decomposition and solution of Equation (6) is rela-

tively slow, it is reliable and is thus used in the initial code versions

in the present research effort. More efficient matrix solution methods are

in early stages of investigation and are showing some signs of promise for

effective implementation in later stages of this study.

!
II. RESEARCH PROGRESS

Object ives

The overall objective of this research is to investigate the numerical

properties and structure of the MFE method in 2-D in order to reduce it to

practice for important PDE systems. In order to conduct the essential research

of the MFE method in 2-D, a number of related objectives/technical milestones

have been addressed and are summarized here with a brief comment on progress

made during the first year's effort:

1. Experimental computer program. In order to conduct research efficiently

on the MFE method in 2-D, an experimental computer program, which is en-

tirely research oriented, is under development. Piecewise linear solution

approximants defined on a hexagonally-connected triangular mesh were

chosen for the initial 2-D code implementation. A highly modular and

flexible code structure is being used in this work in order to facilitate

investigations of numerous classes of PDE's which are of interest. An

initial version of this experimental program is now executing MFE solu-

tions successfully for heat equations, simple advection and Burger's

equations, amply fulfilling this objective for the first year.

2. Node control methods. This milestone encompasses analysis of numerical

and nodal behavior for conservation equations, with consideration of

both advection-dominated and diffusion-dominated equations. Movement of

the MFE nodes is controllable to a large extent by regularization terms

in the MFE minimization procedures. Suitable regularization procedures

(or "penalty functions") can ensure that the mesh cannot get tangled
I during the evolution of the problem. In 1-D research, it was seen that a

small number of control parameters would allow a great deal of flexibility

in the type of node mobility available in specific problems while satis-

-8-
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fying a variety of logical and analytical criteria. For early developmen-

tal purposes, a simple regularization scheme which is similar in concept

to the scheme used in I-D has been incorporated in the 2-D code. Initial

results in 2-D indicate that the additional degrees of freedom which are

I present in the 2-D node-moving equations have a beneficial effect on the

MFE integration properties, vis a vis the more highly constrained nodal

equations in only one spatial dimension.

3. Matrix solutions. The MFE method reduces coupled PDE's on the problem

domain into a set of coupled ODE's on the nodes of a discrete, mo able

mesh. Numerical solution of these coupled ODE's then reduces to solutions

of a matrix equation of rather high order for any reasonable number of

nodes and of physical variables. For the triangulation which is presently

1under study in this 2-D MFE research, the Jacobian in the ODE problem is

a banded matrix, with a relatively narrow band, permitting solution by

I L-U decomposition. Such a solution package has been coded and tested for

the 2-D code. These solutions have also been verified against identical

results from an IMSL package. We have also tested point and line relaxa-

tion methods and found them to converge too slowly for the production

purposes which are ultimately envisaged. Testing of dynamic ADI methods

has also been undertaken. Two-directional ADI appears to work well (if

quadrilateral grid meshes are to be used), and three-directional ADI for

a triangular grid mesh requires more research before conclusions can be

made.

The first year's objectives have thus been satisfactorily met, with imple-

mentation of a first-generation 2-D code and related analyses and experiments
which have demonstrated the feasibility of the MFE method in the 2-D problems

tested to date. A substantive technical discussion of this progress appears

in the following sections of this report.

STATUS OF THE RESEARCH

j A. Experimental 2-D Computer Program

The fundamental architecture of an MFE code is determined largely byI the type of solution approximants and the associated basis functions which

are used. For reasons of simplicity and in view of the experience gained in

-9-
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I

I earlier 1-0 research, piecewise linear solution approximants are used in

this 2-D research. This selection of piecewise linear functions is further

supported by numerous results in 1-D which confirm that POE solution approxi-

mants of higher degree are not nearly so critical for attaining high levels

of stability and accuracy in a moving node solution method as they are in

fixed node solution methods. Given this selection of piecewise linear

functions, alternative initial test code architectures in 2-D have been

designed to operate either on a triangle-by-triangle basis or on a node-by-

node basis. The properties of these respective code architectures are under

j intensive study because later applications to real-world problems in fluid

dynamics or in continuum mechanics, for example, will require both

node-by-node and triangle-by-triangle code evaluations.

A large amount of the computational effort in the MFE method is devoted

to repetitive evaluations of the inner product terms in Equations (4), which

1are then used iteratively in the numerical ODE integration procedures.

Because invariant geometrical relationships can be exploited frequently in

the evaluation of inner products, these geometrical relationships are

generated and encoded once, and for all time, from the initialization data at

the outset of code calculations. Figures 6-8 illustrate the grid mesh

conventions which would be established and encoded by the present 2-D code

for 42 nodes on a 7 x 6 grid. The manner in which these relationships are

used can be seen readily by considering a single conservation equation

ut = f - gy + Uxx + Uyy (8)

and the piecewise linear basis functions about the ith node of the form

ai = aix + biy + ci (9)I
The inner products (ci, 0i) which appear in the mass matrix of

Eqns. (4) are evaluated as

(0i9ci) = I dxdy (aix + biy + ci) 2 
, (10)

6T

where the ith node is surrounded by six adjoining triangles T. The two-

[ dimensional integration over a triangle T in Equation (10) can be performed

either analytically or by the midpoint rule according to the formula

[lO
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I

I f w(x, y) dxdy - (A/3) [w(P 1 ) + w(P2) + w(P3 )] , (11)

I where A is the area of triangle T, and P1 , P2, and P3 are the midpoints of

the sides. This simple midpoint formula of integration is exact whenever

the integrand, w(x, y) is a quadratic function in x and y. The present

research code uses the above midpoint rule and contains options for the

use of a composite midpoint and some analytic integration methods, as well.

Using the relationships between basis functions Bi = uxi and Yi = uyOi,

and noting that uX and uy are constants, the inner products (ai, Bi), (6i, Bi),
I(8, Yi) and i Y.) can also be evaluated readily. For a general

operator L(u) = f, it can be shown that

(-fx% i) = ).(x)i J dxdy f , and

1
(-x Bi) = Y.ux ~(ox) i f dxdyf + Ynij f -r(s)ds

The integration on ds is performed with respect to arc length s along a

triangle edge and ai = T(s) is the linear function of s which rises from a

value 0. at an outer node to a value 1.0 at the ith central node. Edge

integrals can be evaluated analytically or by numerical quadrature.

Simpson's rule and a composite Simpson's rule are available for use in the

present research code. The derivatives ax, ux, and the x component of

the unit outward normal nI are readily determined at all times by invariant

formulae from the known amplitudes and nodal co-ordinates at triangle

vertices.

Inner products of Laplacian operators are more complicated to evaluate,

requiring, in addition to the quantities above, the unit tangent vectors and

their x and y components.(7) The formulae for these quantities are

also encoded at the outset of computations for repeated use in later code

- calculations.

The overall 2-D code structure is conceptually simple, as indicated in

1Figure 9. The detailed code structure contains an assembly of approximately

forty subroutines which perform modularly the numerous subtasks which are

1
1 -13-



I

Problem Initialization

(i) Test Problem Designation (the PDE's)

(ii) Initial Conditions, Including Grid Nodes

(iii) Boundary Conditions

I (iv) Problem Run Designations

(Numerical Quadrature Options, ODE
Integration Control Parameters,
Jacobian Evaluation Options,
Regularization Parameters, etc.)

(v) Output Designations

Construct ODE's of the MFE MethodJ

- Residual and 1 Matrix Solution of
Jacobian Evaluations, ODE Integration Linearized Residual
Including Regulariza- OD n r oin s
tion Terms Equations

Out

- Figure 9. Schematic Representation of Major

Functions Performed in the Present
MFE Codes in 1-D and 2-D.

[[
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I required in order to execute the major code functions indicated in Figure 9.

This structure facilitates mathematical research on alternative (actually,

I interchangeable) ODE solution methods, matrix solution methods, node control

strategies, boundary conditions, and such other tasks as grid mesh generation

and issues of numerical analysis which must be investigated in new PDE solu-

tion methods. This code structure of the MFE method also appears to be highly

compatible with vector and parallel processing computers.

B. Node Control MethodsI
Because the mass matrix C(y) in Equation (5) can become singular

J (whenever all components u have a flat portion in their graph at some node

(xi, Yi)), regularization terms are included in the minimization prob-

lem for the x and y equations. The minimization problem for x and reads

a = 0 and h = 0 , whereak k  aYkI
il - 2  12 - d ) 2

i p - Li(U)JJ + I (E.(d) (d (12)
triangle

altitudes

This minimization then yields regularization terms of the form:

in the k equation

Ej{ja S.(d.)I • J (13a)

j, in the ; equation

c { .. - Sj(d} J
ayk

It follows that the terms d = x + d 7 and the terms J and .axk k " Yk th t r a

in Equations (13) are dependent primarily upon grid geometry; and their in-

variant formulae are thus generated at the outset and encoded for repeated

calculations later in the code in a manner similar to many portions of the

residual evaluations which were discussed above.

[
[ -15-
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l The functions E2 and ES which appear in Equations (13) are treated in

exactly the same manner as an advanced penalty function formulation which has

been tested previously in 1-D investigations(7) of effective regularization

methods; that is,

2 d - 1 (14)
T - SEPMIN)

ES 2 (15)
E S =(d - SEPMIN)2 '

J I where SEPMIN is a minimum triangle altitude. A detailed node controlling

policy has been developed for the selection of values for the constants C1I and C2 in terms of local truncation errors and of the inner products (8, 8)

and (y, y) which appear in the k and 5 equations. A discussion of this

policy in specific 1-D problem applications appears in Reference 6. A detailed

J discussion of this policy for 2-D applications is deferred until several

- additional generalizations which are presently under development in 2-0 are

completed. These generalizations will also have the effect of preventing

automatically the inversions (tangling) of triangles. Such inversions are

presently detected and prevented by testing the aspect ratios and the signs of

triangle determinant quantities. Integration time steps are reduced when aspect

ratios exceed a designated value or when there is a change of sign in the

determinant quantities.

- C. Matrix Solution

The BCE equations (6) are solved by Newton's iteration method. A

single iterate of the linearized equations is expressed as

where ; is the latest Newton iterate; y + 6y is the next iterate, and is

ithe latest value of y which has been used to evaluate the Jacobian R'. (Due

to the large expense of calculating Jacobians in 2-D, a modified Newton's

method is also used whenever possible.) Upon introducing the variables

z - (y-.)/t and

I R(y) = F(y, z) C(y) z -g(y) (17)

-16-
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I it follows that

R,(y) = F + Fz Zy =  F(y,z) + (18)
Zy ay At

m The resulting matrix equation,

C() + aF(;,i) ay = - R(y) (19)
At Dy

can then be solved for 6y by numerous matrix solution methods. The Jacobian

3F/aY, can be evaluated either analytically or by numerical incrementation.

Two options of numerical incrementation are available in the present 2-D

Jcode; the first option employs a central difference method, and the second

option employs a forward difference method. This is apparently not a

critical choice because small errors in Jacobians usually affect only the

rate of convergence--and not the stability and eventual accuracy of the MFE

1 solutions.

Several matrix solution methods have been tested in this work for use in

the 2-D MFE method, including both point and line relaxation methods, alter-

nating direction implicit (ADI) methods, and (direct) L-U decomposition methods.

It was found that the point and line relaxation methods converge too slowly

to be effective in MFE calculations in 2-D. Two-directional dynamic ADI was

found to be quite effective in its own right for a quadrilateral grid, and it

may also be useful as a preconditioning method for such other matrix solution

methods as conjugate gradient methods. The triangular mesh which is used in

the present MFE work in 2-D would require, however, a three-directional ADI

method for solution of the matrix equations (19). Although promising, the

jthree-directional ADI method still requires continuing research on issues of

definiteness prior to implementation as a matrix solution method in the MFE

1method. Matrix reduction methods which are based upon multi-grid tech-
niques provide a promising alternative to ADI for the triangular mesh used in

this work. These reduction methods are in only the early stages of research

for possible use in the MFE method, and they will be investigated more exten-

sively in the coming year.

In view of its reliability, and notwithstanding its relatively large

computational overhead, an L-U decomposition method is presently used to

solve the matrix equations (19). With Equations (19) written in the form Ax

1 -17-
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= B, where x 6y, etc., the matrix A can be decomposed into a lower triangular

matrix L and an upper triangular matrix U in which the values 1.0 appear

(arbitrarily) on the diagonal of U. The system LUx = B is then solved

successively, using Gauss elimination, in two stages: first, the system Lm = B

is solved for m, and second, the system Ux = m is solved for x =6y. Testing of

this linear solver on independent test problems and comparisons to results from

a similar banded matrix solver package in the IMSL library on the Lawrence

Berkeley Laboratory computer system comfirm the reliability of the direct L-U

decomposition method for yielding accurate solutions of the BCE equations (19).T

D. Test Problems

Numerous simple test problems have now been used for initial testing of

the MFE method in 2-D. These problems have been designed to test such numerical

aspects of the MFE method as:

(1) Inner product evaluations (analytic and numerical quadrature)

(2) ODE integration for the MFE equations

(3) Matrix solution methods

(4) Regularization schemes for control of node motions

(5) Jacobian evaluations

(6) Boundary conditions (zero-Neumann and Dirichlet).

The PDE's in these test problems are in the form of general conservation

equations,

ut = -fx - gy + v(Uxx + Uyy) , (20)

where the flux functions f and g can have nearly arbitrary functional

forms.

In addition to the simple examples of the heat equation and of square wave

propagation which were presented in Reference 7 , two somewhat more complex test

examples have also been studied.

(i) Oblique Propagation of a Scalar Wave

This example considers the propagation by pure advection of a scalar wave

I. diagonally across the initial grid mesh, according to the equation ut + ux + Uy = 0.

-18-
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i The initial conditions for this example are shown schematically in Figure 10

and are expressed as:

u(x,y,O) = 1.0 0.1 < x < 0.2; 0.1 < y < 0.2

u(x,y,O) = 0. x < 0.05; x > 0.25 and all y

u(x,y,O) = linear otherwise

I Dirichlet conditions, u(x,y,t) = 0., are applied at all boundaries. The

co-ordinates x and y obey the following Dirichlet conditions: x = 0. along

the y axis; x = 1.0 along the boundary x = 1.0, all y; y = 0. along the x

axis; and y = 1.0 along the boundary y = 1.0, all x. The co-ordinate

I variables obey zero-Neumann conditions on y along the y axis and along the

boundary at x = 1.0 for all y and on x along the x axis and along the boundary

at y = 1.0 for all x. (That is, the y co-ordinate is free to slide along the

vertical boundaries, and the x co-ordinate is free to slide along the horizon-

-tal boundaries.)

Using a 6x6 grid of moving nodes, this problem is run from t = 0. to

t = 0.8, which spans the interval of free propagation. The accuracy of the

wave profile is maintained to within 1 part in 103, consistent with the

local truncation error constraint in the ODE solver. The velocity of propaga-

tion is accurate to 4 significant figures. The mesh is observed to move flex-

j ibly in order to maintain these accuracies throughout the problem evolution. As

this wave approaches the upper right-hand corner of the domain, aspect ratios

of some of the grid mesh triangles approach values on the order of approxi-

mately 102, with no adverse effects. The triangle aspect ratios can be made

to assume values which are an order magnitude larger by imposing Dirichlet

conditions on the x and y coordinates at the boundaries. It was also found

that the MFE method can solve this problem with equal facility and efficiency

[for much larger, finite gradients of the scalar wave front.

This problem can readily be modified so that the scalar wave trajectory

follows a circular path according to the pure advection equation,

I ut = cos(t) ux + sin(t) . uy , -a x < a

I -a< y < a , (21)
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I where the dimensions a are sufficiently large to contain the circular trajec-

tory. In this MFE solution, the scalar wave follows its circular trajectory

I accurately and returns precisely to its initial position, consistent with the

local truncation error constraint in the ODE solver, after a complete revolu-

tion (t = 2w), using 20 time step cycles. The grid mesh again expands and con-

tracts smoothly and flexibly in maintaining the desired solution accuracy at

all times.

(ii) Burger-Like Equations.

A 2-D analog of Burger's 1-D model equation is given by the equations

au 2
au _B(u~2- - (uv) + vV 2 U (22)t ax ay

aV 3 (UV) 2- (V 2 ) + VV 2 
v

where u and v can be viewed as x and y components of a fluid velocity, respec-

tively. In order to maintain a close analogy to the 1-D Burger's model

results which were discussed in Reference 2, initial and boundary conditions

for this system of PDE's are first selected so as to lead to the propagation

of a uniform, step-like wave in a direction parallel to they-axis; that is,

u(x,y,O) = 0. 0. < x < 1.0; 0. < y < 1.0

v(x,y,O) = 1.0 0 < y < 0.100; 0 < x < 1.0

v(x,y,O) = 0. 0.101 < y < 1.0; 0 < x < 1.0

v(x,y,O) = linear otherwise

-1.
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This problem is solved from t = 0 to t = 0.5 on a 4 x 19 grid with v =102. *

The dependent variable v obeys zero-Neumann conditions along the y axis and

along the (vertical) boundary at x = 1.0; and v obeys the Dirichlet condi-

tions, v = 1.0 along the x axis and v = 0. along the (horizontal) boundary at

y = 1.0. All interior nodal co-ordinates obey the sane type of sliding

boundary conditions as were used in the scalar wave example discussed above.

Figures 12-15 present the MFE solutions of this evolving wave front. The

extensive migration of the MFE nodes from their initial positions to those

positions which resolve the waveform at t = 0.2 is clearly evident in Figures

12 and 13. The speed of propagation and the shock-like wavefront solutions

are resolved to accuracies of three significant figures, or better, consis-

tent with the local truncation error constraint of the ODE solver. The

magnitudes of the wavefront gradients are approximately 100 in this example,

and MFE solutions of this problem can be obtained with similar facility and

efficiency for much larger gradients (corresponding to smaller values of v in

f Eqns. (22) and (23)). Consistent with earlier results in Reference 7 for

simpler square wave propagation by pure advection, it is found also in this

Burger-like example that wide latitude can be exercised in the selection of

node controlling parameters in the functions E2 and ES of Eqns. (14) and

(15). When relatively weak internodal forces are used, no nodal deviation

(or bias) in the x direction is observed. (There are no transverse forces in

the PDE's, per se.) As the internodal forces are increased to sufficiently

large values, the nodes can be forced by the regularization terms to migrate

toward the x-axis for the nodal triangulation shown in Figure 12--meanwhile

maintaining the accuracies mentioned above. The direction of such forced

nodal migration can be reversed by using the opposite type of grid triangu-

lation, and this node migration can also be altered by the use of different

penalty functions. Node control is thus very flexible and desired accuracies

are readily maintained. When PDE's contain non-trivial x-dependencies inI
*This problem can be solved with equal effectiveness on an MFE grid of 4x1O

nodes. The 4x19 grid simply represents the initial attempt on this problem.

The figures 12-15 below have rotated the co-ordinate axes in the x-y plane

by 90' from the conventional orientation (x horizontal and y vertical) in

order to improve the viewing angle for the results plotted in 3-D. The terms

"horizontal" and "vertical" refer strictly to the conventional orientation of

the x-y plane throughout this discussion.
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their operators, the PDE's themselves resume their dominant role in governing

- the positioning of the nodes, as will be seen in a skewed waveform example below.

Figure 15 shows the formation of the boundary layer at the right-hand boundary,

as this MFE solution approaches the correct asymptotic solution.

Finally, an example of a skewed, propagating wavefront (shock) can be

formulated in terms of the Burger-like equations,

ut = 0 (24)

vt = -1/2 (V2)y +vV 2 v , (25)

on the unit square. An 8x8 grid of MFE nodes is used, and the initial con-

ditions for u and v on uniformly spaced grid nodes are:

u(x,y,O) = 0 all x,y

v(x,y,O) = 1+7T, 1+6T, 1+5T,...,l at nodes 1, 2, 3,...,8

along 1st row (x-axis)

v(x,y,O) = -1, -(1+T), -(1+2T),...,-(1+7T) at nodes 57, 58,

59,... ,64 along top row.

The initial values of v(x,y,O) along a given vertical line are obtained by

linear interpolation at interior nodes. The parameter T is assigned a con-

stant value of 0.01, and the value of v in Eqns. (24)-(25) is assigned a

value of 0.01 in the present run. As shown in Figure 16, these initial

conditions on v simply map a plane in which v has the values +1.07 at the co-

ordinates (0,0); +1.0 at (1,0); -1.0 at (0,1); and -1.07 at (1,1). Dirichlet

boundary conditions are maintained on v(x,y,t) and on x and y along the hori-

zontal boundaries; zero-Neumann boundary conditions are applied to v(x,y,t)

and to y on the vertical boundaries; and Dirichlet boundary conditions are

maintained on x along the vertical boundaries. This skewing of the initially

counter-directed velocity components along the top and bottom boundaries

ir leads to the evolution of non-uniform wavefront solutions which are seen in

the results below. In the early stages of solution, prior to t - 0.5, a

projection of the MFE solution on the x-y plane shows two counter-directed,
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quasi-horizontal wave impulses which propagate from top to bottom and from

bottom to top at speeds of approximately 0.5. At t = 0.5, a shock is formed

when the propagating impulses encounter each other near the horizontal center-

line of the x-y domain. Subsequently, a skewed, shock-like waveform is generated

and propagates in the serpentine manner shown in Figures 16-19. The relatively

large aspect ratios seen in Figure 19 for the MFE mesh at t = 20. were created

deliberately by the use of Dirichlet boundary conditions on the x co-ordinates

along the x axis and along the parallel boundary line at y = 1. The MFE node

migration was fluid throughout and exhibited no grid-biasing effects. This

problem was run from t = 0. to t = 20. in approximately 125 time-step cycles.

The gradients of the fully developed shock are on the order of 100, consistent

with the present value of v = 0.01. As above, MFE solutions of this problem

on an 8x8 grid can be obtained for much larger gradients (smaller values of v)

with essentially the sane levels of robustness and efficiency as are seen in

the present example.

From the results obtained in 2-D to date, it is apparent that the hexa-

gonally connected triangular mesh used here and perhaps several other possible

triangulation schemes are quite compatible with the MFE method. The addition-

al degrees of geometrical freedom which are available for error minimizing

node motions in 2-D have been found, so far, to have a beneficial effect on

the numerical integration efficacy of the MFE method in 2-D, vis a vis the

more highly constrained nodal motions in 1-0 MFE solutions.(2,3) The nodal

movement properties observed in these 2-D examples thus suggest some likely

implications on the eventual role of mesh generation needs and data structure

issues in the MFE method. So long as the MFE method continues to exhibit this

robustness in its continuous node movement properties, the use of grid mesh

generation routines would be reduced primarily to problem initializations.

This anticipated restriction to problem initializations thus minimizes the

likely role of, and demands upon, conventional mesh generation methods which

may be used in conjunction with the MFE method. It is, of course, possible

that some infrequent remapping of MFE solutions may sometimes be required in

order to reach final solutions; in such circumstances, one would undoubtedly

choose to interrupt the MFE solution, regrid the numerical PDE solution data

at that stage, and then proceed again with the MFE solution as a new initial-

value problem. For this type of procedure, the data structures would remain

invariant in each individual stage of numerical solution, and the MFE method,
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per se, would continue to serve as the dynamic mesh generator. It thus appears

J that. if any revisions at all are required in existing mesh generation methods

for MFE initializations, only minor alterations of mesh indexing and of triangle

J orientations would be needed.

IV. ADDITIONAL INFORMATION

A. JOURNAL PUBLICATIONS

1. Gelinas, R.J., Doss, S.K., and Miller, K., "The Moving Finite Element

Method: Applications to General Partial Differential Equations with Multiple

Large Gradients," J. Comp. Phys., 40, No. 1, p. 202 (March 1981).

2. Prosnitz, D., Haas, R.A., Doss, S.K., and Gelinas, R.J., "Two-Dimensional

Numerical Model Of a Free Electron Laser Ainplifier," to appear in the J. of

Quantum Electronics. (Summary presented at the Conference on Lasers and

Electro-Optics (CLEO-81), Washington, D.C., June 10-12, 1981.)

B. MANUSCRIPT IN PREPARATION

1. Gelinas, R.J., Doss, S.K., Vajk, J.P., Djomehri, M.J., and Miller, K.,

"The Moving Finite Element Method: 2-D Applications," to be submitted to

J. Comp. Phys., in late 1982.

C. PROFESSIONAL PERSONNEL ASSOCIATED WITH THE RESEARCH EFFORT

Dr. M. Jahed Djomehri (student of Prof. Keith Miller. Dr. Djomehri, who has
a Ph.D. in Nuclear Engineering, will receive a Ph.D. in Mathematics at U.C.
Berkeley during the summer of 1982.

Dr. Said K. Doss

Dr. Robert J. Gel inas

Dr. J. Peter Vajk
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0. INTERACTIONS (COUPLING ACTIVITIES)

I (i) Papers presented at meetings and conferences

1 1. Gelinas, R.J. and Doss, S.K., "The Moving Finite Element Method: A Semi-

Automatic Solver for Diverse POE Applications," Advances in Computer Methods

for Partial Differential Equations - IV, pp. 230-239, Edited by R. Vichnevetsky

and R.S. Stepleman, Proceedings of the Fourth IMACS International Symposium

j on Computer Methods for Partial Differential Equations held at Lehigh Univer-

sity - Bethlehem, PA, U.S.A., June 30 - July 2, 1981.

2. Vajk, J.P., Doss, S.K., Gelinas, R.J., and Miller, K., "The Moving Finite

Element Method: Implementation of a 2-D Code," Presented at the LASL Adaptive

Mesh Workshop, Los Alamos, NM; August 5-7, 1981.

3. Doss, S.K., "Solution of the Gas Dynamics Equations in 1-D by the Moving

Finite Element Method," presented at SIAM Meeting, Cincinnati, OH, October 26-

28, 1981.

4. Gelinas, R.J. and Doss, S.K., "Moving Finite Elements in 2-D," presented

at 1982 Army Numerical Analysis and Computers Conference, February 3-4, 1982,

Vicksburg, MS.

5. Gelinas, R.J. and Doss, S.K., "The Moving Finite Element Method: Strong

Shock and Penetration Mechanics Applications," presented at Army Research

Office Workshop on Computational Aspects of Penetration Mechanics, April 27-

29, 1982, Aberdeen Proving Ground, MD.

6. Gelinas, R.J., Doss, S.K., Vajk, J.P., Djomehri, M.J., and Miller, K.,

"Moving Finite Elements in 2-D," prepared for presentation at 10th IMACS

Congress, August 8-13, 1982, Montreal, Canada; to appear as full-length

article in the Proceedings.

[ 7. Gellnas, R.J. and Doss, S.K., "The Moving Finite Element Method: One-

Dimensional Transient Flow Applications," prepared for presentation at 10th

IMACS Congress, August 8-13, 1982, Montreal, Canada; to appear in Proceedings.
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(ii) Seminars and invited talks on the moving finite element delivered

during the past year:

1. Air Force Weapons Laboratory (contact: Dr. Ralph Rudder)

2. Eglin Air Force Base (contact: Major Guy Spitale)

3. Lawrence Livermore Laboratory (contact: Dr. David Anderson)

4. NASA Ames Laboratory (contact: Dr. Paul Cutler)

5. Ford Scientific Laboratory (contact: Dr. A. Paluzny)

6. Sandia Laboratory (July, 1982, contact: Dr. R. Kee)

(iii) Consultive functions to other agencies

1. Eglin Air Force Base; we are currently under contract to investigate the

application of the MFE method in 2-D to armor penetration effects; contact:

Major Guy Spitale.

2. Defense Nuclear Agency; in negotiation to investigate the application of

the MFE method in 2-D to airblast effects; contact: Dr. George Ullrich.

-36-



I REFERENCES

I
1. K. Miller and R. Mil',r, "Moving Finite Elements, Part I" and "Moving

Finite Elements, Part II," SIAM J. of Num. Anal., 1019-57, Vol. 18, No.

6, December 1981.

1 2. R. J. Gelinas, S. K. Doss and K. Miller, "The Moving Finite Element

Method: Applications to General Partial Differential Equations with

Multiple Large Gradients," J. Comp. Phys., 40, No. 1, p. 202, 1981.

1 3. R. J. Gelinas and S. K. Doss, "The Moving Finite Element Method: A Semi-

Automatic Solver for Diverse POE Applications," presented at the Fourth

1 IMACS International Symposium on Computer Methods for Partial Differential

Equations, Lehigh University, Bethlehem, PA, June 30-July 2, 1981.

4. D. Prosnitz, R. A. Haas and S. Doss, "Two-Dimensional Numerical Model of

a Free Electron Laser Aiplifier," to appear in the J. of Quantum Elec-

tronics. (Summary presented at the Conference on Lasers and Electro-

Optics (CLEO '81), Washington, DC, June 10-12, 1981.)

5. R. J. Gelinas and S. K. Doss, "The Moving Finite Element Method: 1-D

Transient Flow Aplications," to be presented at the 10th IMACS World

Congress on Systems Simulation and Scientific Computation, Montreal,

Canada, August 8-13, 1982.

6. R. J. Gelinas and S. K. Doss, "DYLA - Moving Finite Element Code in I-D:

User Instruction Manual," report for EG&G, Idaho Falls, ID, May 1981.

(K. Miller has also developed gradient dependent regularization formu-

lations, unpublished.)

1 7. R.J., Gelinas, S.K. Doss, J.P. Vajk, J. Djomehri and K. Miller, "Moving

Finite Elements in 2-0," to be presented at the 10th IMACS World Congress

on Systems Simulation and Scientific Computation, Montreal, Canada,

August 8-13, 1982.

1 -37-




